6,701 research outputs found

    Evaluation of the ion implantation process for production of solar cells from silicon sheet materials

    Get PDF
    The objective of this program is the investigation and evaluation of the capabilities of the ion implantation process for the production of photovoltaic cells from a variety of present-day, state-of-the-art, low-cost silicon sheet materials. Task 1 of the program concerns application of ion implantation and furnace annealing to fabrication of cells made from dendritic web silicon. Task 2 comprises the application of ion implantation and pulsed electron beam annealing (PEBA) to cells made from SEMIX, SILSO, heat-exchanger-method (HEM), edge-defined film-fed growth (EFG) and Czochralski (CZ) silicon. The goals of Task 1 comprise an investigation of implantation and anneal processes applied to dendritic web. A further goal is the evaluation of surface passivation and back surface reflector formation. In this way, processes yielding the very highest efficiency can be evaluated. Task 2 seeks to evaluate the use of PEBA for various sheet materials. A comparison of PEBA to thermal annealing will be made for a variety of ion implantation processes

    Large area space solar cell assemblies

    Get PDF
    Development of a large area space solar cell assembly is presented. The assembly consists of an ion implanted silicon cell and glass cover. The important attributes of fabrication are (1) use of a back surface field which is compatible with a back surface reflector, and (2) integration of coverglass application and call fabrication

    Optimal utility and probability functions for agents with finite computational precision

    No full text
    When making economic choices, such as those between goods or gambles, humans act as if their internal representation of the value and probability of a prospect is distorted away from its true value. These distortions give rise to decisions which apparently fail to maximize reward, and preferences that reverse without reason. Why would humans have evolved to encode value and probability in a distorted fashion, in the face of selective pressure for reward-maximizing choices? Here, we show that under the simple assumption that humans make decisions with finite computational precision––in other words, that decisions are irreducibly corrupted by noise––the distortions of value and probability displayed by humans are approximately optimal in that they maximize reward and minimize uncertainty. In two empirical studies, we manipulate factors that change the reward-maximizing form of distortion, and find that in each case, humans adapt optimally to the manipulation. This work suggests an answer to the longstanding question of why humans make “irrational” economic choices

    Processing technology for high efficiency silicon solar cells

    Get PDF
    Recent advances in silicon solar cell processing have led to attainment of conversion efficiency approaching 20%. The basic cell design is investigated and features of greatest importance to achievement of 20% efficiency are indicated. Experiments to separately optimize high efficiency design features in test structures are discussed. The integration of these features in a high efficiency cell is examined. Ion implantation has been used to achieve optimal concentrations of emitter dopant and junction depth. The optimization reflects the trade-off between high sheet conductivity, necessary for high fill factor, and heavy doping effects, which must be minimized for high open circuit voltage. A second important aspect of the design experiments is the development of a passivation process to minimize front surface recombination velocity. The manner in which a thin SiO2 layer may be used for this purpose is indicated without increasing reflection losses, if the antireflection coating is properly designed. Details are presented of processing intended to reduce recombination at the contact/Si interface. Data on cell performance (including CZ and ribbon) and analysis of loss mechanisms are also presented

    Further research on high open circuit voltage in silicon solar cells

    Get PDF
    The results of a new research on the use of controlled dopant profiles and oxide passivation to achieve high open circuit voltage V sub oc in silicon solar cells is presented. Ion implantation has been used to obtain nearly optimal values of surface dopant concentration. The concentrations are selected so as to minimize heavy doping effects and thereby provide both high blue response and high V sub oc ion implantation technique has been successfully applied to fabrication of both n-type and p-type emitters. V sub oc of up to 660 mV is reported and AMO efficiency of 16.1% has been obtained

    On Radiation Pressure in Static, Dusty HII Regions

    Full text link
    Radiation pressure acting on gas and dust causes HII regions to have central densities that are lower than the density near the ionized boundary. HII regions in static equilibrium comprise a family of similarity solutions, parametrized by 3 parameters: beta, gamma, and the product (Q_0 n_rms); beta characterizes the stellar spectrum, gamma characterizes the dust/gas ratio, Q_0 is the ionizing output from the star (photons/s), and n_rms is the rms density within the ionized region. Adopting standard values for beta and gamma, varying (Q_0 n_rms) generates a one-parameter family of density profiles, ranging from nearly uniform density (small Q_0 n_rms), to hollow-sphere HII regions (large Q_0 n_rms). When (Q_0 n_rms) exceeds 10^{52} cm^{-3} s^{-1}, dusty HII regions have conspicuous central cavities, even if no stellar wind is present. For given beta, gamma and (Q_0 n_rms), a fourth quantity, which can be Q_0, determines the overall size and density of the HII region. Examples of density and emissivity profiles are given. We show how quantities of interest -- such as the peak-to-center emissivity ratio, the rms-to-mean density ratio, the edge-to-rms density ratio, and the fraction of the ionizing photons absorbed by the gas -- depend on the 3 parameters beta, gamma, and (Q_0 n_rms). For dusty HII regions, compression of the gas and dust into an ionized shell results in a substantial increase in the fraction of the >13.6 eV photons that actually ionize H (relative to a uniform density HII region with the same dust/gas ratio and density n=n_rms). We discuss the extent to which radial drift of dust grains in HII regions can alter the dust-to-gas ratio. The applicability of these solutions to real HII regions is discussed.Comment: New material and figures that were not in version 1. To appear in Ap

    Status of high-efficiency module design and fabrication

    Get PDF
    The fabrication of high efficiency solar energy conversion modules (13% efficiency at NOCT - Nominal Operating Cell Temperature) is discussed, with emphasis placed on reducing NOCT, since reduced operating temperature improves both efficiency and module lifetime

    High-efficiency module design

    Get PDF
    Progress on the development of a high efficiency module is described. The effort includes development of high efficiency cells using crystalline silicon wafers from float zone silicon. Module-size cells, 53 sq cm in area, were fabricated with efficiency of 18%. Operating temperature reduction is also studied

    Binaries and the dynamical mass of star clusters

    Full text link
    The total mass of a distant star cluster is often derived from the virial theorem, using line-of-sight velocity dispersion measurements and half-light radii, under the implicit assumption that all stars are single (although it is known that most stars form part of binary systems). The components of binary stars exhibit orbital motion, which increases the measured velocity dispersion, resulting in a dynamical mass overestimation. In this article we quantify the effect of neglecting the binary population on the derivation of the dynamical mass of a star cluster. We find that the presence of binaries plays an important role for clusters with total mass M < 10^5 Msun; the dynamical mass can be significantly overestimated (by a factor of two or more). For the more massive clusters, with Mcl > 10^5 Msun, binaries do not affect the dynamical mass estimation significantly, provided that the cluster is significantly compact (half-mass radius < 5 pc).Comment: Comments: 2 pages. Conference proceedings for IAUS246 'Dynamical Evolution of Dense Stellar Systems', ed. E. Vesperini (Chief Editor), M. Giersz, A. Sills, Capri, Sept. 200
    corecore